
Peyrin & Ryan
Summer 2020

CS 161
Computer Security Discussion 8

Network Security III

Question 1 NSEC
In class, you learned about DNSSEC, which uses signature chains to ensure authentica-
tion for DNS results. Recall that in the case of a negative result (the name requested
doesn’t exist), the nameserver returns a signed pair of domains that are alphabetically
before and after the requested name.

For example, suppose the following names exist in google.com when it’s viewed in
alphabetical order:

...

a-one-and-a-two-and-a-three-and-a-four.google.com

a1sauce.google.com

aardvark.google.com

...

In this ordering, aaa.google.com would fall between a1sauce.google.com and
aardvark.google.com. So in response to a DNSSEC query for aaa.google.com, the
name server would return an NSEC RR that in informal terms states “the name that in
alphabetical order comes after a1sauce.google.com is aardvark.google.com”, along
with a signature of that NSEC RR made using google.com’s key.

(a) DNS attacks we previously saw in class caused victims to unknowingly visit an
attacker-controlled domain. Since receiving a negative result back from a name-
server causes a client to raise an error rather than visit a domain, why is a signature
still necessary? What attack becomes possible without one?

Solution: This prevents a DoS attack. If signatures weren’t provided with the
negative result, then object security is lost. An adversary can pretend to be a
nameserver and return negative results for every user query to keep them from
visiting any websites. This won’t be detected as there’s no longer a signature
to check.

(b) A startup, ThoughtlessSecurity, decides to modify DNSSEC to only return a
signature of the requested domain on a negative result. They claim that this change
will drastically reduce the packet-size of a negative result.

A company implements ThoughtlessSecurity’s product on their nameserver. What
attack is now possible? Specify exactly how an attacker could execute this attack.

Page 1 of 6



Solution:

A DoS attack is now possible. An attacker can query random domains that have
a high probability of not existing. This will cause the nameserver to constantly
compute signatures on the fly which will lead to server exhaustion if enough
queries are sent.

Note that the queries need to be unique, as negative results are generally cached.

(c) Using the originally-described DNSSEC protocol, describe how an attacker can
enumerate all domain names

Solution:

An attacker can send any query for a domain that doesn’t exist. Upon receiving
the request, they learn two domain names. They can then send requests for non-
existent domains that are alphabetically directly before and after those domain
names to learn two more domain names. They can continue this process to
enumerate all the names.

(d) A new startup, ThoughtfulSecurity wants to use a hash function to hinder this
enumeration process and start by taking the hash of each existing domain. How
can they use hashes to provide authenticated negative results?

Solution: Instead of sorting on the domains, the sorting is done on hashes of
the names. For example, suppose the procedure is to use SHA1 and then sort
the output treated as hexadecimal digits. If the original zone contained:

barkflea.foo.com

boredom.foo.com

bug-me.foo.com

galumph.foo.com

help-me.foo.com

perplexity.foo.com

primo.foo.com

then the corresponding SHA1 values would be:

barkflea.foo.com = e24f2a7b9fa26e2a0c201a7196325889abf7c45b

boredom.foo.com = 6d0edfd3efa5bf11b094cb26a7c95a3bd5e85a84

Discussion 8 Page 2 of 6 CS 161 – Summer 2020



bug-me.foo.com = 649bb99765bb29c379d935a68db2eebc95ad6a29

galumph.foo.com = 71d0549ab66459447a62b639849145dace1fa68e

help-me.foo.com = 1ed14d3733f88e5794cd30cbbef8cc32fa47db2a

perplexity.foo.com = 446ac4777f8d3883da81631902fafd0eba3064ec

primo.foo.com = 8a1011003ade80461322828f3b55b46c44814d6b

Sorting these on the hex for the hashes:

help-me.foo.com = 1ed14d3733f88e5794cd30cbbef8cc32fa47db2a

perplexity.foo.com = 446ac4777f8d3883da81631902fafd0eba3064ec

bug-me.foo.com = 649bb99765bb29c379d935a68db2eebc95ad6a29

boredom.foo.com = 6d0edfd3efa5bf11b094cb26a7c95a3bd5e85a84

galumph.foo.com = 71d0549ab66459447a62b639849145dace1fa68e

primo.foo.com = 8a1011003ade80461322828f3b55b46c44814d6b

barkflea.foo.com = e24f2a7b9fa26e2a0c201a7196325889abf7c45b

Now if a client requests a lookup of snup.foo.com, which doesn’t exist, the name
server will return a record that in informal terms states “the hash that in al-
phabetical order comes after 71d0549ab66459447a62b639849145dace1fa68e is
8a1011003ade80461322828f3b55b46c44814d6b” (again along with a signature
made using foo.com’s key). This type of Resource Record is called NSEC3.

The client would compute the SHA1 hash of snup.foo.com:

snup.foo.com = 81a8eb88bf3dd1f80c6d21320b3bc989801caae9

and verify that in alphabetical order it indeed falls between those two returned
values (standard ASCII sorting collates digits as coming before letters). That
confirms the non-existence of snup.foo.com.

(e) How does this method help prevent enumeration attacks? Which properties does
the hash function need to have?

Solution:

Since the client only receives hashes of the domain names, they can’t learn what
the original domain names are unless they can break the one-wayness of the
hash function.

(f) Describe how an adversary with access to a dictionary might still be able to perform
an enumeration attack. What conditions must hold true for the domain names?

Solution:

An adversary can conduct a dictionary attack, either directly trying names to
see whether they exist, or inspecting the hash values returned by NSEC3 RRs

Discussion 8 Page 3 of 6 CS 161 – Summer 2020



to determine whether names in a dictionary (for which the attacker computes
hash values offline) indeed appear in the domain. The domain names must be
part of the dictionary in this case.

Discussion 8 Page 4 of 6 CS 161 – Summer 2020



Question 2 Low-level Denial of Service
In this question, you will help Mallory develop new ways to conduct denial-of-service
(DoS) attacks.

(a) CHARGEN and ECHO are services provided by some UNIX servers. For every
UDP packet arriving at port 19, CHARGEN sends back a packet with 0 to 512
random characters. For every UDP packet arriving at port 7, ECHO sends back a
packet with the same content.

Mallory wants to perform a DoS attack on two servers. One with IP address A
supports CHARGEN, and another with IP address B supports ECHO. Mallory can
spoof IP addresses.

i. Is it possible to create a single UDP packet with no content which will cause
both servers to consume a large amount of bandwidth?

• If yes, mark ‘Possible’ and fill in the fields below to create this packet.

• If no, mark ‘Impossible’ and explain within the provided lines.

Possible Impossible

If possible, fill in the fields:

Source IP: B Destination IP: A
Source port: 7 Destination port: 19

If impossible, why?

Solution: Source IP: B, port: 7. Destination IP: A, port: 19. Source and
destination can be flipped. Notice this will create a chain of CHARGEN
and ECHO that will generate a lot of network traffic.

ii. Assume now that CHARGEN and ECHO are now modified to only respond to
TCP packets (post-handshake) and not UDP. Is it possible to create a single
TCP SYN packet with no content which will cause both servers to consume a
large amount of bandwidth? Assume Mallory is off-path from the two servers.

• If yes, mark ‘Possible’ and fill in the fields below to create this packet.

• If no, mark ‘Impossible’ and explain within the provided lines.

Possible Impossible

If possible, fill in the fields:

Discussion 8 Page 5 of 6 CS 161 – Summer 2020



Source IP: Destination IP:
Source port: Destination port:
Sequence #: Ack #: N/A

If impossible, why?

Solution: Impossible. As seen in previous question, source/destination IP
has to be B/A for the chain to work. If you send a SYN packet to A
pretending to be B, A will send SYN-ACK to B, which won’t respond since
it never sent a SYN. The connection won’t be established.

Discussion 8 Page 6 of 6 CS 161 – Summer 2020


