
Peyrin & Ryan
Summer 2020

CS 161
Computer Security Discussion 10

Web Security II

Question 1 Session Fixation
A session cookie is used by most websites in order to manage user logins. When the user
logs in, the server sends a randomly-generated session cookie to the user’s browser. The
server also stores the cookie value in a database along with the corresponding username.
The user’s browser sends the session cookie to the server whenever the user loads any
page on the site. The server then looks the session cookie up in the database and retrieves
the corresponding username. Using this, the server can know which user is logged in.

Some web application frameworks allow cookies to be set by the URL. For example,
visiting the URL

http://foobar.edu/page.html?sessionid=42.

will result in the server setting the sessionid cookie to the value “42”.

(a) Can you spot an attack on this scheme?

(b) Suppose the problem you spotted has been fixed as follows: foobar.edu now es-
tablishes new sessions with session IDs based on a hash of the tuple (username,

time of connection). Is this secure? If not, what would be a better approach?

Page 1 of 3

Question 2 Cross-Site Request Forgery (CSRF)
In a CSRF attack, a malicious user is able to take action on behalf of the victim. Consider
the following example. Mallory posts the following in a comment on a chat forum:

Of course, Patsy-Bank won’t let just anyone request a transaction on behalf of any given
account name. Users first need to authenticate with a password. However, once a user
has authenticated, Patsy-Bank associates their session ID with an authenticated session
state.

(a) Explain what could happen when Alice visits the chat forum and views Mallory’s
comment.

(b) Patsy-Bank decides to check that the Referer header contains patsy-bank.com.
Will the attack above work? Why or why not?

(c) Describe one way Mallory can modify her attack to always get around this check

(d) Recall that the Referer header provides the full URL. HTTP additionally offers an
Origin header which acts the same as the Referer but only includes the website
domain, not the entire URL. Why might the Origin header be preferred?

(e) Almost all browsers support an additional cookie field SameSite. When SameSite=strict,
the browser will only send the cookie if the requested domain and origin domain
correspond to the cookie’s domain. Which CSRF attacks will this stop? Which
ones won’t it stop? Give one big drawback of setting SameSite=strict.

Discussion 10 Page 2 of 3 CS 161 – Summer 2020

Question 3 Second-order linear... err I mean SQL injection
Alice likes to use a startup, NotAmazon, to do her online shopping. Whenever she adds
an item to her cart, a POST request containing the field item is made. On receiving
such a request, NotAmazon executes the following statement:

cart_add := fmt.Sprintf("INSERT INTO cart (session, item) " +

"VALUES (’%s’, ’%s’)", sessionToken, item)

db.Exec(cart_add)

Each item in the cart is stored as a separate row in the cart table.

(a) Alice is in desperate need of some toilet paper, but the website blocks her from
adding more than 72 rolls to her cart Describe a POST request she can make to
cause the cart_add statement to add 100 rolls of toilet paper to her cart.

When a user visits their cart, NotAmazon populates the webpage with links to the items.
If a user only has one item in their cart, NotAmazon optimizes the query (avoiding joins)
by doing the following:

cart_query := fmt.Sprintf("SELECT item FROM cart " +

"WHERE session=’%s’ LIMIT 1", sessionToken)

item := db.Query(cart_query)

link_query = fmt.Sprintf("SELECT link FROM items WHERE item=’%s’", item)

db.Query(link_query)

After part(a), Alice recognizes a great business opportunity and begins reselling all of
NotAmazon’s toilet paper at inflated prices. In a panic, NotAmazon fixes the vulnerability
by parameterizing the cart_add statement.

(b) Alice claims that parameterizing the cart_add statement won’t stop her toilet paper
trafficking empire. Describe how she can still add 100 rolls of toilet paper to her
cart. Assume that NotAmazon checks that sessionToken is valid before executing
any queries involving it.

Discussion 10 Page 3 of 3 CS 161 – Summer 2020

