
Peyrin & Ryan
Summer 2020

CS 161
Computer Security Discussion 10

Web Security II

Question 1 Session Fixation
A session cookie is used by most websites in order to manage user logins. When the user
logs in, the server sends a randomly-generated session cookie to the user’s browser. The
server also stores the cookie value in a database along with the corresponding username.
The user’s browser sends the session cookie to the server whenever the user loads any
page on the site. The server then looks the session cookie up in the database and retrieves
the corresponding username. Using this, the server can know which user is logged in.

Some web application frameworks allow cookies to be set by the URL. For example,
visiting the URL

http://foobar.edu/page.html?sessionid=42.

will result in the server setting the sessionid cookie to the value “42”.

(a) Can you spot an attack on this scheme?

(b) Suppose the problem you spotted has been fixed as follows: foobar.edu now es-
tablishes new sessions with session IDs based on a hash of the tuple (username,

time of connection). Is this secure? If not, what would be a better approach?

Solution:

(a) The main attack is known as session fixation. Say the attacker establishes a ses-
sion with foobar.edu, receives a session ID of 42, and then tricks the victim into
visiting http://foobar.edu/browse.html?sessionid=42 (maybe through an
img tag). The victim is now browsing foobar.edu with the attacker’s account.
Depending on the application, this could have serious implications. For exam-
ple, the attacker could trick the victim to pay his bills instead of the victim’s
(as intended).

Another possibility is for the attacker to fix the session ID and then send the user
a link to the log-in page. Depending on how the application is coded, it might
so happen that the application allows the user to log-in but reuses the previous
(attacker-set) session ID. For example, if the victim types in his username and
password at http://foobar.edu/login.html?sessionid=42, then the session
ID 42 would be bound to his identity. In such a scenario, the attacker could
impersonate the victim on the site. This is uncommon nowadays, as most login
pages reset the session ID to a new random value instead of reusing an old one.

Page 1 of 6

(b) The proposed fix is not secure since it solves the wrong problem - it doesn’t
fix either issue. In fact, it makes things weaker by significantly reducing the
entropy of the session cookie.

The correct fix is for the server to generate cookie values afresh, rather than
setting them based on the session ID provided via URL parameters. Also, the
server shouldn’t allow cookies to be set by the URL. This makes the attackers
job more difficult as they have to do some form of XSS in order to manipulate
the client’s cookie vs. just clicking on a link.

Discussion 10 Page 2 of 6 CS 161 – Summer 2020

Question 2 Cross-Site Request Forgery (CSRF)
In a CSRF attack, a malicious user is able to take action on behalf of the victim. Consider
the following example. Mallory posts the following in a comment on a chat forum:

Of course, Patsy-Bank won’t let just anyone request a transaction on behalf of any given
account name. Users first need to authenticate with a password. However, once a user
has authenticated, Patsy-Bank associates their session ID with an authenticated session
state.

(a) Explain what could happen when Alice visits the chat forum and views Mallory’s
comment.

Solution: The img tag embedded in the form causes the browser to make
a request to http://patsy-bank.com/transfer?amt=1000&to=mallory with
Patsy-Bank’s cookie. If Alice was previously logged in (and didn’t log out),
Patsy-Bank might assume Alice is authorizing a transfer of 1000 USD to Mal-
lory.

(b) Patsy-Bank decides to check that the Referer header contains patsy-bank.com.
Will the attack above work? Why or why not?

Solution: In most cases, it will solve the problem since the Referer header
will contain the blog’s URL instead of patsy-bank.com.

However, not all browsers send the Referer header, and even when they do,
not all requests include it.

(c) Describe one way Mallory can modify her attack to always get around this check

Solution: She can have the link go to a URL under Mallory’s control which
contains patsy-bank.com such as patsy-bank.com.attacker.com or
attacker.com/attack?dummy=patsy-bank.com. Then this page can redirect
to the original malicious link. Now the Referer header will pass the check.

Another solution, is if the Patsy-Bank has a so-called “open redirect”
http://patsy-bank.com/redirect?to=url, the referrer for the redirected re-
quest will be http://patsy-bank.com/redirect?to=.... An attacker can
abuse this functionality by causing a victim’s browser to fetch a URL like http:
//patsy-bank.com/redirect?to=http://patsy-bank.com/transfer..., and from
patsy-bank.com’s perspective, it will see a subsequent request for http://

patsy-bank.com/transfer... that indeed has a Referer from patsy-bank.com.

(d) Recall that the Referer header provides the full URL. HTTP additionally offers an

Discussion 10 Page 3 of 6 CS 161 – Summer 2020

http://patsy-bank.com/redirect?to=http://patsy-bank.com/transfer
http://patsy-bank.com/redirect?to=http://patsy-bank.com/transfer
http://patsy-bank.com/transfer
http://patsy-bank.com/transfer

Origin header which acts the same as the Referer but only includes the website
domain, not the entire URL. Why might the Origin header be preferred?

Solution: Leaking the entire URL can be a violation of privacy against users.
As an example, consider Alice transferred money by visiting
http://patsy-bank.com/transfer?amt=1000&to=bob and subsequently went
to a website under an attacker’s control - now the attacker has learned the exact
amount of money Alice sent and to who. The Origin header would only leak
that Alice was at the patsy-bank.com.

As a sidenote not directly related to the question, the Origin is a very useful
way to solve the CSRF problem since it makes it much easier for multiple,
trusted sites to make some action. For example, Patsy-Bank might trust
http://www.trustedcreditcardcompany.com to directly transfer money from
a user’s account. This is a use-case that the CSRF token-based solution doesn’t
support cleanly.

(e) Almost all browsers support an additional cookie field SameSite. When SameSite=strict,
the browser will only send the cookie if the requested domain and origin domain
correspond to the cookie’s domain. Which CSRF attacks will this stop? Which
ones won’t it stop? Give one big drawback of setting SameSite=strict.

Solution: It stops almost all CSRF attacks, except those involving open redi-
rects from the website in question or if the website itself has an XSS vulnerability
(discussed in the next problem).

However, setting SameSite=strict can greatly limit functionality since any
external links that require a user to be logged in won’t work. For instance,
consider a friend sends you a Facebook link via email, clicking on that link
will require you to sign in again since your session cookie wasn’t sent with the
request.

Discussion 10 Page 4 of 6 CS 161 – Summer 2020

Question 3 Second-order linear... err I mean SQL injection
Alice likes to use a startup, NotAmazon, to do her online shopping. Whenever she adds
an item to her cart, a POST request containing the field item is made. On receiving
such a request, NotAmazon executes the following statement:

cart_add := fmt.Sprintf("INSERT INTO cart (session, item) " +

"VALUES (’%s’, ’%s’)", sessionToken, item)

db.Exec(cart_add)

Each item in the cart is stored as a separate row in the cart table.

(a) Alice is in desperate need of some toilet paper, but the website blocks her from
adding more than 72 rolls to her cart Describe a POST request she can make to
cause the cart_add statement to add 100 rolls of toilet paper to her cart.

Solution: Note that Alice can see her own cookies so knows what sessionToken
is. She can perform some basic SQL injection by sending a POST request with
the item field set to:

toilet paper’), ($sessionToken, ’toilet paper’), ... ; --

Where $sessionToken is the string value of her sessionToken and
($sessionToken, ’toilet paper’) repeats 99 times. A similar attack could
also be done by modifying the sessionToken itself

When a user visits their cart, NotAmazon populates the webpage with links to the items.
If a user only has one item in their cart, NotAmazon optimizes the query (avoiding joins)
by doing the following:

cart_query := fmt.Sprintf("SELECT item FROM cart " +

"WHERE session=’%s’ LIMIT 1", sessionToken)

item := db.Query(cart_query)

link_query = fmt.Sprintf("SELECT link FROM items WHERE item=’%s’", item)

db.Query(link_query)

After part(a), Alice recognizes a great business opportunity and begins reselling all of
NotAmazon’s toilet paper at inflated prices. In a panic, NotAmazon fixes the vulnerability
by parameterizing the cart_add statement.

(b) Alice claims that parameterizing the cart_add statement won’t stop her toilet paper
trafficking empire. Describe how she can still add 100 rolls of toilet paper to her
cart. Assume that NotAmazon checks that sessionToken is valid before executing
any queries involving it.

Solution: Alice can send a malicious POST request like part (a). Even though
her input won’t change the SQL statement from (a), it will still store her string

Discussion 10 Page 5 of 6 CS 161 – Summer 2020

in the database. Now, if she visits her cart we’ll execute the optimized query.
Note that link_query doesn’t have any injection protections, so her input will
maliciously change the SQL statement. The item field in her POST request
should be something like:

toilet paper’; INSERT INTO cart (session, item) VALUES

($sessionToken, ’toilet paper’), ... ; --

Moral of the story: Securing external facing APIs/queries is not enough.

Discussion 10 Page 6 of 6 CS 161 – Summer 2020

