
Peyrin & Ryan
Summer 2020

CS 161
Computer Security

Final Review
Memory Safety

Question 1 Memory safety

Q1.1 True or False: Suppose we compile a program with 512-bit canaries, and the program produces
no output (so it is impossible to leak the value of the canary). It is possible to successfully write to
memory located above the stack canary.

True False

Q1.2 True or False: In the last question of Project 1, ASLR prevents the attacker from knowing the
address of any instructions in memory.

True False

Q1.3 True or False: An 8-byte stack canary is less secure than a 4-byte stack canary.

True False

Q1.4 Format string vulnerabilities can allow the attacker to:

Read memory

Write memory

Execute Shellcode

None of these

Q1.5 Which of the following memory safety hardening measures work by ensuring that all writeable
regions in memory are non-executable, and all executable regions in memory are non-writeable?

ASLR

Stack canaries

DEP (also known as WˆX or NX)

None of these

Q1.6 Bear Systems hardens its code with both DEP (also known as WˆX or NX) and its own custom
variant of ASLR. Normally, ASLR chooses a random o�set for the stack and heap when the program
starts running. Bear Systems modi�es the compiler to choose a random o�set when the program
is compiled and hardcode this into the binary executable. Bear Systems ships the same executable
to all of its customers. What is the e�ect of this modi�cation to ASLR on security against memory
safety exploits?

This modi�cation makes security better.

This modi�cation has no signi�cant e�ect on security.

This modi�cation makes security worse.

Page 1 of 3



Question 2 Virtual Tables, Real Fun
The following code runs on a 32-bit x86 system.

1 # include < s t d i o . h>
2 in t main ( ) {
3 FILE ∗ fp ;
4 char buf [ 8 ] ;
5 fp = fopen ( " o u t i s " , " rb " ) ;
6 f r e a d ( buf , s i z eo f char , 1 2 , fp ) ;
7 f c l o s e ( fp ) ;
8 }

Behind the hood, the FILE struct is implemented in stdio.h as follows:

1 s t ruc t _IO_FILE ; / ∗ imp l emen t a t i o n om i t t e d ∗ /
2
3 typedef s t ruc t {
4 s t ruc t _IO_FILE u f i l e ;
5 s t ruc t _IO_jump_t ∗ v t a b l e ;
6 } F ILE ;
7
8 s t ruc t _IO_jump_t {
9 s i z e _ t ( ∗ f r e a d ) ( void ∗ , s i z e _ t , s i z e _ t , F ILE ∗ ) ;

10 s i z e _ t ( ∗ f w r i t e ) ( void ∗ , s i z e _ t , s i z e _ t , F ILE ∗ ) ;
11 in t ( ∗ f c l o s e ) ( F ILE ∗ ) ;
12 / ∗ more members be l ow om i t t e d ∗ /
13 } ;
14
15 in t f c l o s e ( FILE ∗ fp ) { return fp −> v t a b l e −> f c l o s e ( fp ) ; }
16 / ∗ more imp l em en t a t i o n s be l ow om i t t e d ∗ /

Make the following assumptions:

1. No memory safety defenses are enabled.

2. The compiler does not perform any optimizations, reorder any variables, nor add any padding in
between struct members.

3. The implementation of the function fopen has been omitted. Assume a sensible implementation
of fopen that initializes the ufile and vtable �elds of the FILE struct to sensible values.

Page 2 of 3 CS 161 – Summer 2020



Q2.1 Running the program in gdb using invoke -d as in Project 1, you �nd the following:

• &buf = 0xbf608040

• &fp = 0xbf608048

• sizeof(struct _IO_FILE) = 32

You wish to prove you can exploit the program by having it jump to the memory address 0xdeadbeef.
Complete the Python script below so that its output would successfully exploit the program.

Note: The syntax \xRS indicates a byte with hex value 0xRS.

#!/usr/bin/env python2
import sys
sys.stdout.write('\x_____\x_____\x_____\x_____' + \

'\x_____\x_____\x_____\x_____' + \

'\x_____\x_____\x_____\x_____')

Q2.2 Which of the following defenses would stop your attack in part (a) from exploiting the program by
jumping to memory address 0xdeadbeef? Assume 0xdeadbeef is at a read-only part of memory.

Stack canaries

ASLR which does not randomize the .text
segment (as in Project 1)

WˆX

ASLR which also randomizes the .text seg-
ment

Q2.3 (Consider this question independently from the previous part.) Now consider that we move the
variables fp and buf outside of the main function, as follows:

1 # include < s t d i o . h>
2 char buf [ 8 ] ; / ∗ &buf = 0 x 0 8 4 0 2 0 2 0 ∗ /
3 FILE ∗ fp ; / ∗ &fp = 0 x0 8 4 0 2 0 2 8 ∗ /
4 in t main ( ) { / ∗ r e s t o f main i s t h e same , bu t no v a r i a b l e s ∗ / }

True or False: It is possible to modify the exploit in part (a) to exploit this modi�ed program.

True False

Page 3 of 3 CS 161 – Summer 2020


