
Peyrin & Ryan
Summer 2020

CS 161
Computer Security

Final Review
Memory Safety

Question 1 Memory safety

Q1.1 True or False: Suppose we compile a program with 512-bit canaries, and the program produces
no output (so it is impossible to leak the value of the canary). It is possible to successfully write to
memory located above the stack canary.

True False

Solution: True. Some vulnerabilities, e.g. format string vulnerabilities allow you to write to
arbitrary locations in memory.

Q1.2 True or False: In the last question of Project 1, ASLR prevents the attacker from knowing the
address of any instructions in memory.

True False

Solution: In that question, the data and text segments were not randomized, so the attacker
can �nd the address of program code and library code.

Q1.3 True or False: An 8-byte stack canary is less secure than a 4-byte stack canary.

True False

Solution: A 8-byte canary is no worse, and possibly better. It might be better because it is
harder to guess, i.e., has more entropy.

Q1.4 Format string vulnerabilities can allow the attacker to:

Read memory

Write memory

Execute Shellcode

None of these

Solution: When the attacker controls the format string, it is easy to read the stack with a
variety of format speci�ers. The %n identi�er lets us write to certain parts of memory, and in
some program lets us overwrite the RIP and execute shellcode.

Page 1 of 5

Q1.5 Which of the following memory safety hardening measures work by ensuring that all writeable
regions in memory are non-executable, and all executable regions in memory are non-writeable?

ASLR

Stack canaries

DEP (also known as WˆX or NX)

None of these

Solution: This is the de�nition of DEP. Stack canaries and ASLR do not do anything to
distinguish writable and executable regions in memory.

Q1.6 Bear Systems hardens its code with both DEP (also known as WˆX or NX) and its own custom
variant of ASLR. Normally, ASLR chooses a random o�set for the stack and heap when the program
starts running. Bear Systems modi�es the compiler to choose a random o�set when the program
is compiled and hardcode this into the binary executable. Bear Systems ships the same executable
to all of its customers. What is the e�ect of this modi�cation to ASLR on security against memory
safety exploits?

This modi�cation makes security better.

This modi�cation has no signi�cant e�ect on security.

This modi�cation makes security worse.

Solution: This defeats the purpose of ASLR. Because the o�set is hardcoded into the ex-
ecutable, it will be the same for all customers (i.e., the addresses will be the same for all
customers). Thus, one customer can extract the o�set from their copy of the executable, and
then use it to infer the addresses used by other customers and attack other customers.

Page 2 of 5 CS 161 – Summer 2020

Question 2 Virtual Tables, Real Fun
The following code runs on a 32-bit x86 system.

1 # include < s t d i o . h>
2 in t main () {
3 FILE ∗ fp ;
4 char buf [8] ;
5 fp = fopen (" o u t i s " , " rb ") ;
6 f r e a d (buf , s i z eo f char , 1 2 , fp) ;
7 f c l o s e (fp) ;
8 }

Behind the hood, the FILE struct is implemented in stdio.h as follows:

1 s t ruc t _IO_FILE ; / ∗ imp l emen t a t i o n om i t t e d ∗ /
2
3 typedef s t ruc t {
4 s t ruc t _IO_FILE u f i l e ;
5 s t ruc t _IO_jump_t ∗ v t a b l e ;
6 } F ILE ;
7
8 s t ruc t _IO_jump_t {
9 s i z e _ t (∗ f r e a d) (void ∗ , s i z e _ t , s i z e _ t , F ILE ∗) ;

10 s i z e _ t (∗ f w r i t e) (void ∗ , s i z e _ t , s i z e _ t , F ILE ∗) ;
11 in t (∗ f c l o s e) (F ILE ∗) ;
12 / ∗ more members be l ow om i t t e d ∗ /
13 } ;
14
15 in t f c l o s e (FILE ∗ fp) { return fp −> v t a b l e −> f c l o s e (fp) ; }
16 / ∗ more imp l em en t a t i o n s be l ow om i t t e d ∗ /

Make the following assumptions:

1. No memory safety defenses are enabled.

2. The compiler does not perform any optimizations, reorder any variables, nor add any padding in
between struct members.

3. The implementation of the function fopen has been omitted. Assume a sensible implementation
of fopen that initializes the ufile and vtable �elds of the FILE struct to sensible values.

Page 3 of 5 CS 161 – Summer 2020

Q2.1 Running the program in gdb using invoke -d as in Project 1, you �nd the following:

• &buf = 0xbf608040

• &fp = 0xbf608048

• sizeof(struct _IO_FILE) = 32

You wish to prove you can exploit the program by having it jump to the memory address 0xdeadbeef.
Complete the Python script below so that its output would successfully exploit the program.

Note: The syntax \xRS indicates a byte with hex value 0xRS.

#!/usr/bin/env python2
import sys
sys.stdout.write('\x_____\x_____\x_____\x_____' + \

'\x_____\x_____\x_____\x_____' + \

'\x_____\x_____\x_____\x_____')

Solution:

A slideshow version of the solution is available here.

There are two possible solutions:

Solution 1:

3c 80 60 bf (= &buf - 4)
ef be ad de (= 0xdeadbeef)
20 80 60 bf (= &buf - 32)

Solution 2:

ef be ad de (= 0xdeadbeef)
38 80 60 07 (= &buf - 8)
24 80 60 07 (= &buf - 28)

Both solutions overwrite fp such that fp->vtable->fclose points to the memory address
0xdeadbeef. When fclose is called, this will lead to the shellcode at 0xdeadbeef being
executed. Note that vtable is o�set 32 from the start of the FILE struct, while fclose is at
o�set 8 from the start of the _IO_jump_t struct.

Award partial credit for each of the following.

• -1 point: not using little endian.

• 0 points: for solutions which write outside the lines, or which strongly misunderstand
syntax. If this is the case, no further points can be awarded below.

• 1 point: writing 0xdeadbeef anywhere in the bu�er. If 0xdeadbeef overwrites fp, no
further points can be awarded below.

• One of the following (whichever gives more points):

– 4 points: overwriting fp with either 0xbf608020 or 0xbf608024.

Page 4 of 5 CS 161 – Summer 2020

https://docs.google.com/presentation/d/1n-0GvW0Al7GvJgyXLhX-M5YUrIEKu39QbRtcQomzu74

– 2 points: overwriting fp with a value between 0xbf608000 and 0xbf608030.

– 1 point: overwriting fp with a value between 0xbf608031 and 0xbf608040.

– If none of the above apply, award no points for this subpart. No further points
can be awarded below.

• One of the following (whichever gives more points):

– 3 points: emulate either solution by writing the correct value into the appropriate
spot: into &buf if using Solution 1, or &buf + 4 if using Solution 2.

– 1.5 points: emulate either solution by writing a value between 0xbf608030 and
0xbf608048 into the appropriate spot: into &buf if using Solution 1, or &buf +
4 if using Solution 2.

Q2.2 Which of the following defenses would stop your attack in part (a) from exploiting the program by
jumping to memory address 0xdeadbeef? Assume 0xdeadbeef is at a read-only part of memory.

Stack canaries

ASLR which does not randomize the .text
segment (as in Project 1)

WˆX

ASLR which also randomizes the .text seg-
ment

Q2.3 (Consider this question independently from the previous part.) Now consider that we move the
variables fp and buf outside of the main function, as follows:

1 # include < s t d i o . h>
2 char buf [8] ; / ∗ &buf = 0 x 0 8 4 0 2 0 2 0 ∗ /
3 FILE ∗ fp ; / ∗ &fp = 0 x0 8 4 0 2 0 2 8 ∗ /
4 in t main () { / ∗ r e s t o f main i s t h e same , bu t no v a r i a b l e s ∗ / }

True or False: It is possible to modify the exploit in part (a) to exploit this modi�ed program.

True False

Solution: Yep, just change the addresses.

Page 5 of 5 CS 161 – Summer 2020

