Symmetric Cryptography

Question 1 True/false

- Q1.1 TRUE or FALSE: Using H(x) = SHA256(x), where x is a message, forms a secure message authentication code.
 - O TRUE O FALSE
- Q1.2 TRUE or FALSE: Encrypting a message with AES-CBC mode and a random IV is IND-CPA secure.
 - O TRUE O FALSE
- Q1.3 TRUE or FALSE: Suppose that in an IND-CPA game for some encryption scheme, there is an attacker who finds a way to guess the random bit correctly with probability 0.4. The scheme could still be IND-CPA.
 - **O** True

O FALSE

O FALSE

Q1.4 TRUE or FALSE: If Bob uses the authenticate-then-encrypt paradigm, the integrity of his plaintext is guaranteed.

O TRUE O FALSE

Q1.5 TRUE or FALSE: A hash function must be collision-resistant to be considered safe for password hashing.

O TRUE

Question 2 EvanBot's Last Creation

Inspired by different AES modes of operation, EvanBot creates an encryption scheme that combines two existing modes of operation and names it AES-DMO (Dual Mode Operation). Provided below is an encryption schematic of AES-DMO.

Q2.1 Fill in the numbered blanks for this incomplete decryption schematic of AES-DMO.

Q2.2 Select all true statements about AES-DMO.

- \square (G) Encryption can be parallelized
- \Box (H) Decryption can be parallelized
- □ (I) AES-DMO is IND-CPA secure
- \Box (J) None of the above

□ (K) —

Question 3

Alice comes up with a couple of schemes to securely send messages to Bob. Assume that Bob and Alice have known RSA public keys.

For this question, *Enc* denotes AES-CBC encryption, *H* denotes a collision-resistant hash function, || denotes concatenation, and \bigoplus denotes bitwise XOR.

Consider each scheme below independently and select whether each one guarantees confidentiality, integrity, and authenticity in the face of a MITM.

Q3.1 Alice and Bob share two symmetric keys k_1 and k_2 . Alice sends over the pair $[Enc(k_1, Enc(k_2, m)), Enc(k_2, m)]$.

\Box (A) Confidentiality	\Box (C) Authenticity	□ (E)
🗖 (B) Integrity	\Box (D) None of the above	\Box (F) —

Q3.2 Alice and Bob share a symmetric key k, have agreed on a PRNG, and implement a stream cipher as follows: they use the key k to seed the PRNG and use the PRNG to generate message-length codes as a one-time pad every time they send/receive a message. Alice sends the pair $[m \bigoplus \text{code}, HMAC(k, m \bigoplus \text{code})]$.

\Box (G) Confidentiality	□ (I) Authenticity	□ (K) —
□ (H) Integrity	\Box (J) None of the above	□ (L)

Q3.3 Alice and Bob share a symmetric key k. Alice sends over the pair [Enc(k, m), H(Enc(k, m))].

🗖 (A) Confidentiality	\Box (C) Authenticity	\Box (E) —
🗖 (B) Integrity	\Box (D) None of the above	\Box (F) —

Q3.4 Alice and Bob share a symmetric key k. Alice sends over the pair [Enc(k, m), H(k||Enc(k, m))].

\Box (G) Confidentiality	🗖 (I) Authenticity	□ (K) —
🗖 (H) Integrity	\Box (J) None of the above	□ (L) —

Question 4

EvanBot has decided to switch career paths and pursue creating new cryptographic hash functions. EvanBot proposes two new hash functions, *E* and *B*:

$$E(x) = H(x_1 x_2 \dots x_{M-1})$$

$$B(x) = H(x_1 x_2 \dots x_M || 0)$$

where *H* is a preimage-resistant and collision-resistant hash function, $x = x_1 x_2 \dots x_M$, $x_i \in \{0, 1\}$ and || denotes concatenation.

In other words, E(x) calls H with the last bit of x removed, and B(x) calls H with a 0 bit appended to x.

Q4.1 Is E(x) preimage-resistant? Provide a counter-example if it is not.

O (A) Yes	(C) —	(E)
O (B) No	(D)	(F)
Counterexample:		

Q4.2 Is E(x) collision-resistant? Provide a counter-example if it is not.

O (G) Yes	(I) ——	(K) —
O (H) No	(J)	(L)
Counterexample:		

Q4.3 Is B(x) preimage-resistant? Provide a counter-example if it is not.

(A) Yes (B) No	(C) (D)	○ (E) ○ (F)
Counterexample:		

Q4.4 Is B(x) collision-resistant? Provide a counter-example if it is not.

O (G) Yes	(I) —	(K) —
O (H) No	(J)	(L)
Counterexample:		