

Password hashing

CS 161: Computer Security
Prof. Raluca Ada Popa

Feb 28, 2020

Passwords

Tension between usability and security

choose memorable
passwords

choose random and
long passwords (hard
to guess)

Attack mechanisms
• Online guessing attacks

– Attacker tries to login by trying different user
passwords in the live system

• Social engineering and phishing
– Attacker fools user into revealing password

• Eavesdropping
– Network attacker intercepts plaintext password on the

connection
• Client-side malware

– Key-logger/malware captures password when
inserted and sends to attacker

• Server compromise
– Attacker compromises server, reads storage and

learns passwords

Defences/mitigations

Network eavesdropper:
• Encrypt traffic using TLS (will discuss later)

Client-side malware: hard to defend
• Intrusion detection mechanisms – detect malware when

it is being inserted into the network
• Various security software (e.g., anti-virus)
• Use two-factor authentication

Mitigations for online-guessing
attacks

• Rate-limiting
– Impose limit on number of passwords attempts

• CAPTCHAs: to prevent automated password guessing

• Password requirements: length, capital letters,
characters, etc.

Mitigations for server compromise

• Suppose attacker steals the database at
the server including all password
information

• Storing passwords in plaintext makes
them easy to steal

• Further problem: users reuse passwords
at different sites!

 Don’t store passwords in plaintext at server!

Hashing passwords
• Server stores hash(password) for each user using a

cryptographic hash function
– hash is a one-way function

• When Alice logs in with password w (and provides w
to server), server computes hash(w) and compares
to Alice’s record

username hash of password
Alice hash(Alice’s password)

Bob hash(Bob’s password)

Password hashing: problems
• Offline password guessing

– Dictionary attack: attacker tries all passwords against each
hash(w)

– If D is dictionary size, n number of hashes passwords,
attack takes Dn

– Study shows that a dictionary of 220 passwords can guess
50% of passwords

• Amortized password hashing
– Idea: One brute force scan for all/many hashes (D+n time)
– Build table (H(password), password) for all 220
passwords
– Crack 50% of passwords in this one pass

LinkedIn was storing h(password)

Prevent amortized guessing attack

• Randomize hashes with salt
• Server stores (salt, hash(password, salt)), salt is

random
• Two equal passwords have different hashes now
• Dictionary attack still possible, BUT need to do

one brute force attack per hash now, not one
brute force attack for many hashes at once

• Attacks takes Dn time instead of D+n time

username salt hash of password
Alice 235545235 hash(Alice’s password,

235545235)

Bob 678632523 hash(Bob’s password,
678632523)

Salted hash example

Attacker tries to guess Alice’s password:
Computes table
‘aaaaaa’ hash(’aaaaaa’, 235545235),
‘aaaaab’ hash(’aaaaab’, 235545235),
…
‘zzzzzzz’ hash(’zzzzzz’, 235545235)

This table is useless for Bob’s password because of
different salt

Increase security further

• Would like to slow down attacker in doing a dictionary
attack

• Use slow hashes = takes a while to compute the hash
• Define
 H(x) = hash(hash(hash(…hash(x))))
 use with x = password || salt

• Tension: time for user to authenticate & login vs
attacker time

• If H is 1000 times slower and attack takes a day with
H, attack now takes 3 years with F

Conclusions

• Do not store passwords in cleartext
• Store them hashed with salts, slower hash functions

better

