
Computer Science 161 Summer 2020 Peyrin and Ryan

Networking Roadmap

Layer Protocols

7. Application Web security

4.5. Secure transport TLS

4. Transport TCP, UDP

3. Internet IP

2. Link

1. Physical

Protocols

Connect for the first

time
DHCP

Convert hostname to

IP address
DNS, DNSSEC

Extra protocols

You are here

Computer Science 161 Spring 2020 Popa and Wagner

• DNS translates www.google.com to 74.125.25.99

• It’s a performance-critical distributed database.

• DNS security is critical for the web. 

(Same-origin policy assumes DNS is secure.)

• Analogy: If you don’t know the answer to a question, ask a

friend for help (who may in turn refer you to a friend of theirs,
and so on).

• Based on a notion of hierarchical trust: we trust . for everything,
com. for any com, google.com. for everything google…

27

Computer Science 161 Spring 2020 Popa and Wagner

DNS Lookups via a Resolver

Host at xyz.poly.edu wants IP address for eecs.mit.edu

requesting host
xyz.poly.edu eecs.mit.edu

root DNS server (‘.’)

local DNS server
(resolver)

dns.poly.edu

1

2
3

4

5

6
authoritative DNS server

(for ‘mit.edu’)
dns.mit.edu

78

TLD DNS server (‘.edu’)

28

Caching heavily
used to minimize

lookups

Network security  
(DNS)

CS 161: Computer Security
Prof. Raluca Ada Popa

March 9, 2020

Slides adapted from David Wagner

Announcements
• Discussion sections online

Domain names

• Domain names are human friendly names to identify
servers or services
– Arranged hierarchically
– www.google.com has:

o .com as TLD (top-level domain) is a subdomain of root
o google.com as a subdomain of com
o www.google.com a subdomain of google.com

Hierarchy of domain names

empty domain

.com .edu

…

google.com

www.google.com

www.mail.google.com

…

…

Top level domains:

Types of domain names (TLD)
1. Generic TLDs: .com, .edu

2. Country-code TLDs: .au .de .it .us

Creating a domain name
• Domain names are registered and assigned by

domain-name registrars, accredited by the
Internet Corporation for Assigned Names and
Numbers (ICANN), same group allocating the IP
address space

• Contact the domain-name registrar to register
domain space

Cybersquatting or Domain Squatting

• Entities buying a domain in advance of it
becoming desirable and later selling to the
agency needing it for much more

2013: Microsoft vs. MikeRoweSoft

The boy accepted an Xbox in exchange for the domain name

DNS Overview

• DNS translates www.google.com to 74.125.25.99:
resolves www.google.com

Name servers

• To resolve a domain name, a resolver queries
a distributed hierarchy of DNS servers also
called name servers

• At the top level are the root name servers,
which resolve TLDs such as .com
–Store the authoritative name server for each

TLD (the trusted server for the TLD)
–Government and commercial organizations run

the name servers for TLDs
–Name server for .com managed by Verisign

A DNS Lookup
1. Alice goes to eecs.mit.edu on her browser

2. Her machine contacts a resolver to ask for eecs.mit.edu’s
IP address

– The resolver can be a name server for the corporate network of
Alice’s machine or of her Internet service provider that her machine
learned from DHCP

3. The resolver will try to resolve this domain name and
return an IP address to Alice’s machine

Alice(requesting host)
xyz.berkeley.edu eecs.mit.edu

root DNS server (‘.’)

local DNS server
(resolver)

dns.berkeley.edu

1

2
3

4

5

6
authoritative DNS server

(for ‘mit.edu’)
dns.mit.edu

78

TLD (top-level domain) DNS
server (‘.edu’)

DNS Lookups via a Resolver

9

IP for eecs.mit.edu?

IP for eecs.mit.edu? Don’t know, but ask .edu with IP 192….

IP for eecs.mit.edu?

Don’t know but ask mit.edu at IP 18….

IP is 18.2.1.1

DNS caching

• Almost all DNS servers (resolver and name servers)
cache entries, which improves performance
significantly

dig  

• A program on Unix that allows querying the DNS
system

• Dumps each field in DNS responses

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Use Unix “dig” utility to look up IP address
(“A”) for hostname eecs.mit.edu via DNS

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

A 16-bit transaction identifier that enables
the DNS client (dig, in this case) to match up
the reply with its original request

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

The question we asked the server

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Type of response: A = IP address, NS = name server

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

“Answer” tells us the IP address associated
with eecs.mit.edu is 18.62.1.6 and we
can cache the result for 21,600 seconds

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

“Authority” tells us the name servers responsible for
the answer. Each RR (resource record) gives the
hostname of a different name server (“NS”) for names in
mit.edu. We should cache each record for 11,088
seconds.
If the “Answer” had been empty, then the resolver’s
next step would be to send the original query to one of
these name servers.

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

“Additional” provides extra information to save us from
making separate lookups for it, or helps with bootstrapping.

Here, it tells us the IP addresses for the hostnames of the
name servers. We add these to our cache.

DNS Protocol
Lightweight exchange

of query and reply
messages, both with
same message
format

Primarily uses UDP for
its transport
protocol, which is
what we’ll assume

Frequently, both
clients and servers
use port 53

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

 SRC port DST port

checksum length

16 bits 16 bits

UDP Payload

UDP Header

DNS
Query

or
Reply

IP Header

DNS Protocol
Lightweight exchange

of query and reply
messages, both with
same message
format

Primarily uses UDP for
its transport
protocol, which is
what we’ll assume

Frequently, both
clients and servers
use port 53

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

 SRC=53 DST=53

checksum length

16 bits 16 bits

UDP Payload

UDP Header

DNS
Query

or
Reply

IP Header

DNS Protocol, cont.

Message header:
• Identification: 16 bit # for

query, reply to query uses
same #

• Along with repeating the
Question and providing
Answer(s), replies can include
“Authority” (name server
responsible for answer) and
“Additional” (info client is
likely to look up soon anyway)

• Each Resource Record has a
Time To Live (in seconds) for
caching (not shown) Additional information

(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

IP Header

Security risk #1: malicious DNS server
• Of course, if any of the DNS servers queried are

malicious, they can lie to us and fool us about the
answer to our DNS query.

• Any consequence?
–We talk to the incorrect server

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

What if the mit.edu server
is untrustworthy? Could
its operator steal, say, all
of our web surfing to
berkeley.edu’s main web
server?

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Let’s look at a flaw in the
original DNS design
(since fixed)

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30000 IN NS www.berkeley.edu.

;; ADDITIONAL SECTION:
www.berkeley.edu. 30000 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

What could happen if the mit.edu server
returns the following to us instead?

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30000 IN NS www.berkeley.edu.

;; ADDITIONAL SECTION:
www.berkeley.edu. 30000 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

We’d dutifully store in our cache a mapping of
www.berkeley.edu to an IP address under
MIT’s control. (It could have been any IP
address they wanted, not just one of theirs.)

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30000 NS www.berkeley.edu.

;; ADDITIONAL SECTION:
www.berkeley.edu. 30000 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Later if we need to resolve www.berkeley.edu,
we will go to the MIT IP address

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30000 IN NS www.berkeley.edu.

;; ADDITIONAL SECTION:
www.berkeley.edu. 30000 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

How do we fix such DNS cache poisoning?

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30000 IN NS www.berkeley.edu.

;; ADDITIONAL SECTION:
www.berkeley.edu. 30000 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Don’t accept Additional records unless
they’re for the domain we’re looking up

E.g., looking up eecs.mit.edu ⇒ only accept
additional records from *.mit.edu

No extra risk in accepting these since server could
return them to us directly in an Answer anyway.

=

Security risk #1: malicious DNS server
• Of course, if any of the DNS servers queried are

malicious, they can lie to us and fool us about the
answer to our DNS query…

• and they used to be able to fool us about the
answer to other queries, too, using cache
poisoning. Now fixed (phew).

Security risk #2: on-path eavesdropper
• If attacker can eavesdrop on our traffic…

we’re hosed.
• Why?

Security risk #2: on-path eavesdropper
• If attacker can eavesdrop on our traffic…

we’re hosed.
• Why? They can see the query and the 16-bit

transaction identifier, and race to send a spoofed
response to our query.

Security risk #3: off-path attacker
• If attacker can’t eavesdrop on our traffic, can he

inject spoofed DNS responses?
• Answer: It used to be possible, via blind spoofing.

We’ve since deployed mitigations that makes this
harder (but not totally impossible).

Blind spoofing

• Say we look up
mail.google.com; how can
an off-path attacker feed us a
bogus A answer before the
legitimate server replies?

• How can such a remote
attacker even know we are
looking up
mail.google.com?

...<img src="http://mail.google.com" …
> ...

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

 Suppose, e.g., we visit a web
page under their control:

Blind spoofing

• Say we look up
mail.google.com; how can
an off-path attacker feed us a
bogus A answer before the
legitimate server replies?

• How can such an attacker
even know we are looking up
mail.google.com?
Suppose, e.g., we visit a web
page under their control:

...<img src="http://mail.google.com" …
> ...

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

This HTML snippet causes our
browser to try to fetch an image from
mail.google.com. To do that, our
browser first has to look up the IP
address associated with that name.

Blind spoofing

So this will be k+1

They observe ID k here

Originally, identification field
incremented by 1 for each
request. How does attacker
guess it?

Once they know we’re looking it
up, they just have to guess the
Identification field and reply
before legit server.

How hard is that?

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

Fix?

DNS Blind Spoofing, cont.

Attacker can send lots of replies,
not just one …

However: once reply from legit
server arrives (with correct
Identification), it’s cached and no
more opportunity to poison it.
Victim is innoculated!

Once we randomize the
Identification, attacker has a
1/65536 chance of guessing it
correctly.
Are we safe?

Unless attacker can send
1000s of replies before legit
arrives…

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

• DNS threats highlight:
– Attackers can attack opportunistically rather than

eavesdropping
o Cache poisoning only required victim to look up some name

under attacker’s control (has been fixed)
– Attackers can often manipulate victims into vulnerable

activity
o E.g., IMG SRC in web page to force DNS lookups

– Crucial for identifiers associated with communication
to have sufficient entropy (= a lot of bits of
unpredictability)

– “Attacks only get better”: threats that appears
technically remote can become practical due to
unforeseen cleverness

Summary of DNS Security Issues

Common Security Assumptions

• (Note, these tend to be pessimistic … but prudent)

• Attackers can interact with our systems without
particular notice
– Probing (poking at systems) may go unnoticed …
– … even if highly repetitive, leading to crashes, and easy

to detect

• It’s easy for attackers to know general information
about their targets
– OS types, software versions, usernames, server ports, IP

addresses, usual patterns of activity, administrative
procedures

Common Assumptions

• Attackers can obtain access to a copy of a given
system to measure and/or determine how it works

• Attackers can make energetic use of automation
– They can often find clever ways to automate

• Attackers can pull off complicated coordination
across a bunch of different elements/systems

• Attackers can bring large resources to bear if needed
– Computation, network capacity
– But they are not super-powerful (e.g., control entire ISPs)

The Kaminsky Blind Spoofing
Attack

DNS Blind Spoofing, cont.

Attacker can send lots of replies,
not just one …

However: once reply from legit
server arrives (with correct
Identification), it’s cached and no
more opportunity to poison it.
Victim is innoculated!

Once we randomize the
Identification, attacker has a
1/65536 chance of guessing it
correctly.
Are we safe?

Unless attacker can send
1000s of replies before legit
arrives…

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

DNS Blind Spoofing (Kaminsky 2008)
• Two key ideas:

– Attacker can get around caching of legit replies by
generating a series of different name lookups:

– Trick victim into looking up a domain you don’t care
about, use Additional field to spoof the domain you do
care about

<img src="http://random1.google.com"
…>
<img src="http://random2.google.com"
…>
<img src="http://random3.google.com"
…>

...
<img src="http://randomN.google.com"
…>

;; QUESTION SECTION:
;random7.google.com. IN A

;; ANSWER SECTION:
random7.google.com 21600 IN A doesn’t matter

;; AUTHORITY SECTION:
google.com. 11088 IN NS mail.google.com

;; ADDITIONAL SECTION:
mail.google.com 126738 IN A 6.6.6.6

Kaminsky Blind Spoofing
For each lookup of randomk.google.com,
attacker spoofs a bunch of records like this,
each with a different Identifier

Once they win the race, not only have they poisoned
mail.google.com … but also the cached NS record for
google.com’s name server - so any future
X.google.com lookups go through the attacker’s machine

;; QUESTION SECTION:
;random7.google.com. IN A

;; ANSWER SECTION:
random7.google.com 21600 IN A doesn’t matter

;; AUTHORITY SECTION:
google.com. 11088 IN NS mail.google.com

;; ADDITIONAL SECTION:
mail.google.com 126738 IN A 6.6.6.6

Kaminsky Blind Spoofing
For each lookup of randomk.google.com,
attacker spoofs a bunch of records like this,
each with a different Identifier

Once they win the race, not only have they poisoned
mail.google.com … but also the cached NS record for
google.com’s name server – so any future
X.google.com lookups go through the attacker’s machine

Defending Against Blind Spoofing

Central problem: all that tells a
client they should accept a
response is that it matches the
Identification field.

With only 16 bits, it lacks
sufficient entropy: even if truly
random, the search space an
attacker must brute force is too
small.

Where can we get more
entropy? (Without requiring a
protocol change.)

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bitsFor requestor to receive DNS
reply, needs both correct
Identification and correct ports.

On a request, DST port = 53.
SRC port usually also 53 – but not
fundamental, just convenient.

Total entropy: 16 bits

Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=rnd

checksum length

16 bits 16 bits

Total entropy: ? bits
“Fix”: client uses random source
port ⇒ attacker doesn’t know
correct dest. port to use in reply

Defending Against Blind Spoofing
“Fix”: client uses random source
port ⇒ attacker doesn’t know
correct dest. port to use in reply

32 bits of entropy makes it orders
of magnitude harder for attacker
to guess all the necessary fields
and dupe victim into accepting
spoof response.

This is what primarily “secures”
DNS against blind spoofing
today.

Total entropy: 32 bits

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=rnd

checksum length

16 bits 16 bits

