Computer Science 161 Spring 2020

Firewalls

Controlling Networks ... On The Cheap

Computer Science 161 Spring 2020

- Key Observation:
 - The more network services your machines run, the greater the risk
- Due to larger attack surface

- But you have to know all the services that are running
- And sometimes some trusted remote users still require access
- Plus key question of scaling
 - What happens when you have to secure 100s/1000s of systems?
 - Which may have different OSs, hardware & users …
 - Which may in fact not all even be identified ...

Motivation: How do you harden a set of systems against external attack?

One approach: on each system, turn off unnecessary network services

Taming Management Complexity

Computer Science 161 Spring 2020

network services

.nterne

- Interpose a firewall the traffic to/from the outside must traverse Chokepoint can cover thousands of hosts
- - Where in everyday experience do we see such chokepoints?

Possibly more scalable defense: Reduce risk by blocking in the network outsiders from having unwanted access your

Selecting a Security Policy

Computer Science 161 Spring 2020

- Firewall enforces an (access control) policy:
 - Who is allowed to talk to whom, accessing what service?
- Distinguish between inbound & outbound connections
 - Inbound: attempts by external users to connect to services on internal machines
 - Outbound: internal users to external services
 - Why? Because fits with a common threat model. There are thousands of internal users (and we've vetted them). There are billions of outsiders.
- Conceptually simple access control policy:
 - Permit inside users to connect to any service
 - External users restricted:
 - Permit connections to services meant to be externally visible
 - Deny connections to services not meant for external access

How To Treat Traffic Not Mentioned in Policy?

Computer Science 161 Spring 2020

- Default Allow: start off permitting external access to services
 - Shut them off as problems recognized
- Default Deny: start off permitting just a few known, wellsecured services
 - Add more when users complain (and mgt. approves)
- Pros & Cons?
 - Flexibility vs. conservative design
 - Flaws in Default Deny get noticed more quickly / less painfully

In general, use Default Deny

Stateless Packet Filter

Computer Science 161 Spring 2020

- A stateless packet filter inspects each packet for certain filtering rules to determine whether to pass or block it (with no history) Simple policy: deny all inbound connections
- - Allow all outbound packets
 - Allow all inbound packets that are a reply... Do you see the problem?
- We can fake it for TCP connections, with a hack
 - Allow all outbound TCP packets
 - Allow all inbound TCP packets with ACK flag set
- We can't handle UDP connections

Stateful Packet Filter

Computer Science 161 Spring 2020

terne

- Firewall keeps track of all connections (inbound/outbound)
- Each rule specifies which connections are allowed/denied (access control policy)
- A packet is forwarded if it is part of an allowed connection

Stateful packet filter is a router that checks each packet against security rules and decides to forward or drop it

Example Rule

Computer Science 161 Spring 2020

allow tcp connection 4.5.5.4:* -> 3.1.1.2:80

- Firewall should permit TCP connection that's:
 - Initiated by host with Internet address 4.5.5.4 and •
 - Connecting to port 80 of host with IP address 3.1.1.2 •
- Firewall should permit any packet associated with this connection
- Thus, firewall keeps a table of (allowed) active connections. When firewall sees a packet, it checks whether it is part of one of those active connections. If yes, forward it; if no, check to see if rule should create a new allowed connection

Example Rule

Computer Science 161 Spring 2020

allow tcp connection *:*/int -> 3.1.1.2:80/ext

- Firewall should permit TCP connection that's:
 - Initiated by host with any internal host and
 - Connecting to port 80 of host with IP address 3.1.1.2 on external Internet
- Firewall should permit any packet associated with this connection
- The /int indicates the network interface.
- This is "Allow all outgoing web requests"

Example Ruleset

Computer Science 161 Spring 2020

allow tcp connection *:*/int -> *:*/ext

allow tcp connection *:*/ext -> 1.2.2.3:80/int

- Firewall should permit outbound TCP connections (i.e., those that are initiated by internal hosts)
- 1.2.2.3

Firewall should permit inbound TCP connection to our public webserver at IP address

Stateful Filtering

Computer Science 161 Spring 2020

would you build a stateful packet filter to do that? In

then "PASS theyllneverguessthis" over a TCP connection to the server.

 Suppose you want to allow inbound connection to a FTP server, but block any attempts to login as "root". How particular, what state would it keep, for each connection?

Background: To log in, the FTP client sends "USER alice"

State Kept

Computer Science

No state – just drop any packet with root in them

- Is it a FTP connection?
- Where in FTP state (e.g. command, what command)
- Src ip addr, dst ip addr, src port, dst port
- Inbound/outbound connection
- Keep piece of login command until it's completed only first 5 bytes of username

Beware!

Computer Science 161 Spring 2020

- firewall
- "root" might span packet boundaries

Packet #1

Sender might be malicious and trying to sneak through

Packet #2

Beware!

Computer Science 161 Spring 2020

Packets might be re-ordered

1 ro

Beware!

Computer Science 161 Spring 2020

Attacker Sender

TTL field in IP header specifies maximum forwarding hop count

Other Kinds of Firewalls

Computer Science 161 Spring 2020

- Application-level firewall
 - Firewall acts as a proxy. TCP connection from client to firewall, which then makes a second TCP connection from firewall to server.
 - Eliminates risks of stateful packet filter interpreting packets different from end host.

Secure External Access to Inside Machines

Computer Science 161 Spring

- protected by a firewall
 - Remote access, telecommuting, branch offices, ...
- Create secure channel (Virtual Private Network, or VPN) to tunnel traffic from outside host/network to inside network
 - May allow bypassing the firewall, reducing firewall effectiveness

Often need to provide secure remote access to a network

Why Have Firewalls Been Successful?

Computer Science 161 Spring 2020

- Central control easy administration and update
 - Single point of control: update one config to change security policies
 - Potentially allows rapid response
- Easy to deploy transparent to end users
 - Easy incremental/total deployment to protect 1000's
- Addresses an important problem
 - Security vulnerabilities in network services are rampant
 - Easier to use firewall than to directly secure code ...

Think like an attacker

Computer Science 161 Spring 2020

firewall. What attacks might you try?

Share your ideas on chat (mark it visible to everyone)

Suppose you wanted to attack a company protected by a

Firewall Disadvantages

Computer Science 161 Spring 2020

Functionality loss – less connectivity, less risk

- May reduce network's usefulness
- Some applications don't work with firewalls
 - Two peer-to-peer users behind different firewalls
- The malicious insider problem
 - Assume insiders are trusted
 - Malicious insider (or anyone gaining control of internal machine) can wreak havoc
- Firewalls establish a security perimeter
 - Like Eskimo Pies: "hard crunchy exterior, soft creamy center"
 - Threat from travelers with laptops, cell phones, ...

Lateral Movement

Computer Science 161 Spring 2020

- Common attack: compromise an internal machine, then use that to attack other internal machines
- From there, you can now exploit internal systems directly
 - Bypassing the primary firewall
- That is the shortcoming of firewalls: A single breach of the perimeter by an attacker and you can no longer make any assertions about subsequent internal state

Takeaways on Firewalls

Computer Science 161 Spring 2020

- again, but at the network level
- Attack surface reduction
- Centralized control

Firewalls: Reference monitors and access control all over

