
UI-based attacks

Clickjacking attacks

• Exploitation where a user’s mouse click
is used in a way that was not intended
by the user

Simple example
<a
onMouseDown=window.open(http://www.evil.com)
href=http://www.google.com/>

Go to Google

What does it do?
• Opens a window to the attacker site
Why include href to Google?
• Browser status bar shows URL when

hovering over as a means of protection

Recall: Frames

• A frame is used to embed another
document within the current HTML
document

• Any site can frame another site

• The <iframe> tag specifies an inline
frame

What happens in this case?

Funny cats website

JavaScript

secret secret

Same-origin policy prevents this access

How to bypass same-origin
policy for frames?

Clickjacking

Clickjacking using frames

Evil site frames good site
Evil site covers good site by putting dialogue

boxes or other elements on top of parts of
framed site to create a different effect

Inner site now looks different to user

Compromise visual integrity – target
• Hiding the target
• Partial overlays

Click

$0.15

$0.15

UI Subversion: Clickjacking
• An attack application (script) compromises the context

integrity of another application’s User Interface when the
user acts on the UI

1. Target checked 2. Initiate
click

3. Target clicked

Temporal integrity
Targetclicked = Targetchecked

Pointerclicked = Pointerchecked

Visual integrity
Target is visible
Pointer is visible

Context integrity consists of
visual integrity + temporal integrity

Compromise visual integrity – target
• Hiding the target
• Partial overlays

Click

$0.15

$0.15

Compromise visual integrity – pointer:
cursorjacking

• Can customize cursor!

CSS example:
#mycursor {
cursor: none;
width: 97px;
height: 137px;
background: url("images/custom-cursor.jpg")
}

Real cursorFake cursor, but more
visible

• Javascript can keep updating cursor, can display shifted cursor

Download .exe

Compromise visual integrity – pointer:
cursorjacking

Cursorjacking deceives a user by using a custom
cursor image, where the pointer was displayed with
an offset

realFake, but more visible

Clickjacking to Access the
User’s Webcam

Fake cursor

Real cursor

How can we defend against
clickjacking?

Defenses
• User confirmation
- Good site pops dialogue box with information
on the action it is about to make and asks for
user confirmation
- Degrades user experience

• UI randomization
- good site embeds dialogues at random
locations so it is hard to overlay
- Difficult & unreliable (e.g. multi-click attacks)

Defense 3: Framebusting
Web site includes code on a page that

prevents other pages from framing it

What is framebusting?
Framebusting code is often made up of
• a conditional statement and
• a counter action

Common method:
if (top != self) {

top.location = self.location;
}

A Survey

Sites Framebusting
Top 10 60%

Top 100 37%

Top 500 14%

Framebusting is very common at the Alexa Top 500 sites

credit: Gustav Rydstedt

[global traffic rank of a website]

Conditional Statements
if (top != self)

if (top.location != self.location)
if (top.location != location)

if (parent.frames.length > 0)
if (window != top)

if (window.top !== window.self)
if (window.self != window.top)

if (parent && parent != window)
if (parent && parent.frames &&

parent.frames.length>0)
if((self.parent && !(self.parent===self)) &&

(self.parent.frames.length!=0))

Many framebusting methods

Counter-Action Statements
top.location = self.location

top.location.href = document.location.href
top.location.href = self.location.href
top.location.replace(self.location)

top.location.href = window.location.href
top.location.replace(document.location)
top.location.href = window.location.href

top.location.href = "URL"
document.write(’’)

top.location = location
top.location.replace(document.location)

top.location.replace(’URL’)
top.location.href = document.location

Many framebusting methods

Most current framebusting
can be defeated

Easy bugs
Goal: bank.com wants only bank.com’s sites to frame it

if (top.location != location) {
if (document.referrer &&

document.referrer.indexOf(”bank.com") == -1)
{

top.location.replace(document.location.href);
}

}

Problem: http://badguy.com?q=bank.com

Bank runs this code to protect itself:

Defense: Ensuring visual integrity of pointer

• Remove cursor customization
– Attack success: 43% -> 16%

Ensuring visual integrity of pointer
• Freeze screen outside of the target display area when the real

pointer enters the target
– Attack success: 43% -> 15%
– Attack success (margin=10px): 12%
– Attack success (margin=20px): 4% (baseline:5%)

Margin=10pxMargin=20px

Ensuring visual integrity of pointer

• Lightbox effect around target on pointer entry
– Attack success (Freezing + lightbox): 2%

How about a temporal integrity attack
example?

Temporal clickjacking
As you click on a button for an insensitive action,
a button for a sensitive action appears overlayed
and you click on it by mistake

• UI delay: after visual changes on target or pointer,
invalidate clicks for X ms
– Attack success (delay=250ms): 47% -> 2% (2/91)
– Attack success (delay=500ms): 1% (1/89)

Enforcing temporal integrity

Enforcing temporal integrity
• Pointer re-entry: after visual changes on target,

invalidate clicks until pointer re-enters target
– Attack success: 0% (0/88)

40

Is there any hope?

Other defense: X-Frames-Options
(IE8, Safari, FF3.7)

• Web server attaches HTTP header to response

• Two possible values: DENY and SAMEORIGIN

• DENY: browser will not render page in framed context

• SAMEORIGIN: browser will only render if top frame is same origin as page
giving directive

• Good defense … but poor adoption by sites (4 of top
10,000)

• Coarse policies: no whitelisting of partner sites, which
should be allowed to frame our site

Other Forms of UI Sneakiness
• Users might find themselves living in The

Matrix …

“Browser in Browser”

Apparent browser is just a fully
interactive image generated by
Javascript running in real browser!
URL checking looks good!

Summary
• Clickjacking is an attack on our perception

of a page based on the UI

• Framebusting is tricky to get right
• All currently deployed code can be defeated

• Use X-Frame-Options

